33 research outputs found

    Full-duplex acoustic interaction system for cognitive experiments with cetaceans

    Full text link
    Cetaceans show high cognitive abilities and strong social bonds. Acoustics is their primary modality to communicate and sense the environment. Research on their echolocation and vocalizations with conspecifics and with humans typically uses visual and tactile systems adapted from research on primates or birds. Such research would benefit from a purely acoustic communication system in which signals flow in both directions simultaneously. We designed and implemented a full duplex system to acoustically interact with cetaceans in the wild, featuring digital echo-suppression. We pilot tested the system in Arctic Norway and achieved an echo suppression of 18 dB leaving room for technical improvements addressed in the discussion. Nevertheless, the system enabled vocal interaction with the underwater acoustic scene by allowing experimenters to listen while producing sounds. We describe our motivations, then present our pilot deployment and give examples of initial explorative attempts to vocally interact with wild orcas and humpback whales

    Exponential Modular Multilevel Converter for Low Voltage Applications

    Get PDF
    This paper presents the structure and control of a single phase Exponential Modular Multilevel Converter (EMMC), which works as a bidirectional AC/DC converter. In addition to the main H-bridge converter, it uses series connected H-bridges with DC link capacitors. The nominal voltage rating of the capacitors is increased with each module by factor of two. In this manner, the number of output voltage levels exponentially increases with the number of series connected H-bridges. By using low-voltage MOSFETs it is possible to achieve a very high efficiency, especially at partial loading. The high number of voltage levels reduces the output voltage THD, while using a low switching frequency. Thus, the required grid filter size can be substantially reduced. Furthermore, the additional capacitor modules increase the nominal output voltage at the AC side, so that the flow of the active and reactive power can be dynamically adjusted. Therefore, the EMMC could be used, for instance, as a vehicle charger directly connected to the grid

    Overview of Battery Impedance Modeling Including Detailed State-of-the-Art Cylindrical 18650 Lithium-Ion Battery Cell Comparisons

    Get PDF
    Electrical models of battery cells are used in simulations to represent batteries\u27 behavior in various fields of research and development involving battery cells and systems. Electrical equivalent circuit models, either linear or nonlinear, are commonly used for this purpose and are presented in this article. Various commercially available cylindrical, state-of-the-art lithium-ion battery cells, both protected and unprotected, are considered. Their impedance properties, according to four different equivalent circuit models, are measured using electrochemical impedance spectroscopies. Furthermore, the pricing, impedance, specific energy, and C-rate of the chosen battery cells are compared. For example, it is shown that the energy density of modern 18650 cells can vary from a typical value of 200 to about 260 Wh kg(-1), whereas the cell price can deviate by a factor of about 3 to 5. Therefore, as a result, this study presents a concise but comprehensive battery parameter library that should aid battery system designers or power electronic engineers in conducting battery simulations and in selecting appropriate battery cells based on application-specific requirements. In addition, the accuracies and computational efforts of the four equivalent circuit models are compared

    Online and On-Board Battery Impedance Estimation of Battery Cells, Modules or Packs in a Reconfigurable Battery System or Multilevel Inverter

    Get PDF
    This paper shows two approaches to determine the battery impedance of battery cells or battery modules when used in a reconfigurable battery system (RBS) or in any type of modular multilevel converter (MMC) for electric drive applications. A generic battery model is used and the concepts of the recursive time and frequency-domain parameter extraction, using a current step and an electrochemical impedance spectroscopy, are explained. Thus, it is shown and demonstrated that the balancing current of neighboring cells/modules ,when in parallel operation, can be used, similar to the time-domain parameter extraction utilizing a current step, to determine the battery parameters. Furthermore, it is shown and demonstrated that a part of the inverter can be used as variable AC voltage source to control a sinusoidal current through the motor inductances of the drive train, which can be injected to the inserted battery cells/modules of an adjacent phase to perform an on-board impedance spectroscopy. Using either of the two presented approaches, the individual battery impedances can be easily determined, yielding the state of health (SOH) and the power capability of individual battery cells/modules. Nonetheless, the analyzed approaches were just considered to be applied at machine standstill, which is not suitable for grid-tied applications

    Sensorless Capacitor Voltage Balancing of a Grid-Tied, Single-Phase Hybrid Multilevel Converter with Asymmetric Capacitor Voltages using Dynamic Programming

    Get PDF
    This paper shows a sensorless capacitor voltage balancing control approach for a grid-connected, single-phase hybrid multilevel inverter based on an NPC main stage with a voltage stiff DC-link and an arbitrary number of H-Bridge modules (capacitor modules) with asymmetric capacitor voltages. Using nearest-level control, a model predictive control (MPC) approach with a prediction horizon of one time step is chosen to find an optimal switching-state combination among the redundant switching combinations to balance the capacitor voltages as quick as possible. Using the Lyapunov stability criterion, it is shown that an offline calculated optimal switching-state sequence for each discrete output voltage level can be used to operate the inverter without using any voltage sensors for the capacitor voltages. To validate the stability of the approach, a laboratory inverter with a resistive load is operated with the offline calculated optimal switching-state sequences and it is shown that the capacitor voltages converge to their desired reference voltages

    Capacitor Voltage Balancing of a Grid-Tied, Cascaded Multilevel Converter with Binary Asymmetric Voltage Levels Using an Optimal One-Step-Ahead Switching-State Combination Approach†

    Get PDF
    This paper presents a novel capacitor voltage balancing control approach for cascaded multilevel inverters with an arbitrary number of series-connected H-Bridge modules (floating capacitor modules) with asymmetric voltages, tiered by a factor of two (binary asymmetric). Using a nearest-level reference waveform, the balancing approach uses a one-step-ahead approach to find the optimal switching-state combination among all redundant switching-state combinations to balance the capacitor voltages as quickly as possible. Moreover, using a Lyapunov function candidate and considering LaSalle\u27s invariance principle, it is shown that an offline calculated trajectory of optimal switching-state combinations for each discrete output voltage level can be used to operate (asymptotically stable) the inverter without measuring any of the capacitor voltages, achieving a novel sensorless control as well. To verify the stability of the one-step-ahead balancing approach and its sensorless variant, a demonstrator inverter with 33 levels is operated in grid-tied mode. For the chosen 33-level converter, the NPC main-stage and the individual H-bridge modules are operated with an individual switching frequency of about 1 kHz and 2 kHz, respectively. The sensorless approach slightly reduced the dynamic system response and, furthermore, the current THD for the chosen operating point was increased from 3.28% to 4.58% in comparison with that of using the capacitor voltage feedback

    COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation.

    Get PDF
    Switzerland is among the countries with the highest number of coronavirus disease-2019 (COVID-19) cases per capita in the world. There are likely many people with undetected SARS-CoV-2 infection because testing efforts are currently not detecting all infected people, including some with clinical disease compatible with COVID-19. Testing on its own will not stop the spread of SARS-CoV-2. Testing is part of a strategy. The World Health Organization recommends a combination of measures: rapid diagnosis and immediate isolation of cases, rigorous tracking and precautionary self-isolation of close contacts. In this article, we explain why the testing strategy in Switzerland should be strengthened urgently, as a core component of a combination approach to control COVID-19

    Seroprevalence of anti-SARS-CoV-2 IgG antibodies, risk factors for infection and associated symptoms in Geneva, Switzerland: a population-based study.

    Get PDF
    Aims: To assess SARS-CoV-2 seroprevalence over the first epidemic wave in the canton of Geneva, Switzerland, as well as risk factors for infection and symptoms associated with IgG seropositivity. Methods: Between April and June 2020, former participants of a representative survey of the 20-74-year-old population of canton Geneva were invited to participate in the study, along with household members aged over 5 years. Blood samples were tested for anti-SARS-CoV-2 immunoglobulin G. Questionnaires were self-administered. We estimated seroprevalence with a Bayesian model accounting for test performance and sampling design. Results: We included 8344 participants, with an overall adjusted seroprevalence of 7.8% (95% credible interval 6.8-8.9). Seroprevalence was highest among 18-49 year-olds (9.5%), and lowest in 5-9-year-old children (4.3%) and individuals >65 years (4.7-5.4%). Odds of seropositivity were significantly reduced for female retirees and unemployed men compared to employed individuals, and smokers compared to non-smokers. We found no significant association between occupation, level of education, neighborhood income and the risk of being seropositive. The symptom most strongly associated with seropositivity was anosmia/dysgeusia. Conclusions: Anti-SARS-CoV-2 population seroprevalence remained low after the first wave in Geneva. Socioeconomic factors were not associated with seropositivity in this sample. The elderly, young children and smokers were less frequently seropositive, although it is not clear how biology and behaviours shape these differences

    Post–COVID-19 Conditions Among Children 90 Days After SARS-CoV-2 Infection

    Get PDF
    IMPORTANCE Little is known about the risk factors for, and the risk of, developing post-COVID-19 conditions (PCCs) among children. OBJECTIVES To estimate the proportion of SARS-CoV-2-positive children with PCCs 90 days after a positive test result, to compare this proportion with SARS-CoV-2-negative children, and to assess factors associated with PCCs. DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study, conducted in 36 emergency departments (EDs) in 8 countries between March 7, 2020, and January 20, 2021, included 1884 SARS-CoV-2-positive children who completed 90-day follow-up; 1686 of these children were frequency matched by hospitalization status, country, and recruitment date with 1701 SARS-CoV-2-negative controls. EXPOSURE SARS-CoV-2 detected via nucleic acid testing. MAIN OUTCOMES AND MEASURES Post-COVID-19 conditions, defined as any persistent, new, or recurrent health problems reported in the 90-day follow-up survey. RESULTS Of 8642 enrolled children, 2368 (27.4%) were SARS-CoV-2 positive, among whom 2365 (99.9%) had index ED visit disposition data available; among the 1884 children (79.7%) who completed follow-up, the median age was 3 years (IQR, 0-10 years) and 994 (52.8%) were boys. A total of 110 SARS-CoV-2-positive children (5.8%; 95% CI, 4.8%-7.0%) reported PCCs, including 44 of 447 children (9.8%; 95% CI, 7.4%-13.0%) hospitalized during the acute illness and 66 of 1437 children (4.6%; 95% CI, 3.6%-5.8%) not hospitalized during the acute illness (difference. 5.3%; 95% CI, 2.5%-8.5%). Among SARS-CoV-2-positive children, the most common symptom was fatigue or weakness (21 [1.1%]). Characteristics associated with reporting at least 1 PCC at 90 days included being hospitalized 48 hours or more compared with no hospitalization (adjusted odds ratio [aOR], 2.67 [95% CI, 1.63-4.38]); having 4 or more symptoms reported at the index ED visit compared with 1 to 3 symptoms (4-6 symptoms: aOR, 2.35 [95% CI, 1.28-4.31]; >= 7 symptoms: aOR, 4.59 [95% CI, 2.50 8.44]); and being 14 years of age or older compared with younger than 1 year (aOR, 2.67 [95% CI, 1.43-4.99]). SARS-CoV-2-positive children were more likely to report PCCs at 90 days compared with those who tested negative, both among those who were not hospitalized (55 of 1295 [4.2%; 95% CI, 3.2%-5.5%] vs 35 of 1321[2.7%; 95% CI, 1.9%-3.7%]; difference, 1.6% [95% CI, 0.2%-3.0%]) and those who were hospitalized (40 of 391[10.2%; 95% CI, 7.4%-13.7%] vs 19 of 380 [5.0%; 95% CI, 3.0%-7.7%]; difference, 5.2% [95% CI, 1.5%-9.1%]). In addition, SARS-CoV-2 positivity was associated with reporting PCCs 90 days after the index ED visit (aOR, 1.63 [95% CI, 1.14-2.35]), specifically systemic health problems (eg, fatigue, weakness, fever; aOR, 2.44 [95% CI, 1.19-5.00]). CONCLUSIONS AND RELEVANCE In this cohort study, SARS-CoV-2 infection was associated with reporting PCCs at 90 days in children. Guidance and follow-up are particularly necessary for hospitalized children who have numerous acute symptoms and are older.This studywas supported by grants from the Canadian Institutes of Health Research (operating grant: COVID-19-clinical management); the Alberta Health Services-University of Calgary-Clinical Research Fund; the Alberta Children's Hospital Research Institute; the COVID-19 Research Accelerator Funding Track (CRAFT) Program at the University of California, Davis; and the Cincinnati Children's Hospital Medical Center Division of Emergency Medicine Small Grants Program. Dr Funk is supported by the University of Calgary Eyes-High PostDoctoral Research Fund. Dr Freedman is supported by the Alberta Children's Hospital Foundation Professorship in Child Health andWellness

    Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex

    Get PDF
    The 5′-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5′-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2′-O positions, catalyzed by nsp14 N7-MTase and nsp16 2′-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2′-O-MTase and the crystal structure of nsp16/nsp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16/nsp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16/nsp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs
    corecore